Intermediate filaments exchange subunits along their length and elongate by end-to-end annealing
نویسندگان
چکیده
Actin filaments and microtubules lengthen and shorten by addition and loss of subunits at their ends, but it is not known whether this is also true for intermediate filaments. In fact, several studies suggest that in vivo, intermediate filaments may lengthen by end-to-end annealing and that addition and loss of subunits is not confined to the filament ends. To test these hypotheses, we investigated the assembly dynamics of neurofilament and vimentin intermediate filament proteins in cultured cells using cell fusion, photobleaching, and photoactivation strategies in combination with conventional and photoactivatable fluorescent fusion proteins. We show that neurofilaments and vimentin filaments lengthen by end-to-end annealing of assembled filaments. We also show that neurofilaments and vimentin filaments incorporate subunits along their length by intercalation into the filament wall with no preferential addition of subunits to the filament ends, a process which we term intercalary subunit exchange.
منابع مشابه
Microtubule-dependent transport and dynamics of vimentin intermediate filaments
We studied two aspects of vimentin intermediate filament dynamics-transport of filaments and subunit exchange. We observed transport of long filaments in the periphery of cells using live-cell structured illumination microscopy. We studied filament transport elsewhere in cells using a photoconvertible-vimentin probe and total internal reflection microscopy. We found that filaments were rapidly ...
متن کاملKinetic mechanism of end-to-end annealing of actin filaments.
We investigated the effect of actin filament length and capping protein on the rate of end-to-end annealing of actin filaments. Long filaments were fragmented by shearing and allowed to recover. Stabilizing filaments with phalloidin in most experiments eliminated any contribution of subunit dissociation and association to the redistribution of lengths but did not affect the results. Two differe...
متن کاملPlasticity of Intermediate Filament Subunits
Intermediate filaments (IFs) assembled in vitro from recombinantly expressed proteins have a diameter of 8-12 nm and can reach several micrometers in length. IFs assemble from a soluble pool of subunits, tetramers in the case of vimentin. Upon salt addition, the subunits form first unit length filaments (ULFs) within seconds and then assembly proceeds further by end-to-end fusion of ULFs and sh...
متن کاملXenopus actin-interacting protein 1 (XAip1) enhances cofilin fragmentation of filaments by capping filament ends.
Xenopus actin-interacting protein 1 (XAip1) is thought to promote fragmentation of actin filaments by cofilin. To examine the mechanism of XAip1, we measured polymer lengths by fluorescence microscopy and the concentration of filament ends with an elongation assay. Cofilin creates ends by severing actin filaments. XAip1 alone does not sever actin filaments or prevent annealing/redistribution of...
متن کاملA quantitative kinetic model for the in vitro assembly of intermediate filaments from tetrameric vimentin.
In vitro assembly of intermediate filament proteins is a very rapid process. It starts without significant delay by lateral association of tetramer complexes into unit-length filaments (ULFs) after raising the ionic strength from low salt to physiological conditions (100 mM KCl). We employed electron and scanning force microscopy complemented by mathematical modeling to investigate the kinetics...
متن کامل